
Wednesday, January 02, 2008
11 Ways to the Library of 2012

Tuesday, December 25, 2007
Happy Holidays and Seasons Greetings

I (as a librarian) found the article and the whole topic very important. I especially enjoyed the conclusion. You wrote that "Web 3.0 is about bringing the miscellaneous back together meaningfully after it's been fragmented into a billion pieces."I was wondering if in your opinion this means that the semantic web may turn a folksonomy into some kind of structured taxonomy. We all know the advantages and disadvantages of a folksonomy. Is it possible for web 3.0 to minimize those disadvantages and maybe even make good use out of them?
(3) Such a use of folksonomies could help overcome some of the inherent difficulties in ontology construction, thus potentially bridging Web 2.0 and the Semantic Web. By using folksonomies' collective categorization scheme as an initial knowledge base for constructing ontologies, the ontology author could then use the tagging distribution's most common tags as concepts, relations, or instances. Folksonomies do not a Semantic Web make -- but it's a good start.
Thursday, December 20, 2007
Information Science As Web 3.0?

In his article Information Science, Tefko Saracevic makes a bold prediction:fame awaits the researcher(s) who devises a formal theoretical work, bolstered by experimental evidence, that connects the two largely separated clusters i.e. connecting basic phenomena (information seeking behaviour) in the retrieval world (information retrieval). A best seller awaits the author that produces an integrative text in information science. Information Science will not become a full-fledged discipline until the two ends are connected successfully.
As Saracevic puts it, IR is one of the most widely spread applications of any information system worldwide. So how come Information Science has yet to produce a Nobel Prize winner?
As I've opined before, LIS will play a prominent role in the next stage of the Web. So who's it gonna be?
Tuesday, December 18, 2007
The Semantic Solution - A Browser?
Semantic Web browser—an end user application that automatically locates metadata and assembles point-and-click interfaces from a combination of relevant information, ontological specifications, and presentation knowledge, all described in RDF and retrieved dynamically from the Semantic Web. With such a tool, naïve users can begin to discover, explore, and utilize Semantic Web data and services. Because data and services are accessed directly through a standalone client and not through a central point of access . . . . new content and services can be consumed as soon as they become available. In this way we take advantage of an important sociological force that encourages the production of new Semantic Web content by remaining faithful to the decentralized nature of the Web
I like this idea of a portal. To have everyone agree about how to implement W3C standards - RDF, SPARQL, OWL - is unrealistic. Not everyone will accept the extra work for no real sustainable incentive. That is perhaps why there is no current real invested interest by companies and private investors to channel funding to Semantic Web research. However, the Semantic Web portal is one method to combat the malaise. In many ways, it resembles the birth of Web 1.0, before Yahoo!'s remarkable directory and search engines. All we need is one Jim Clark and one Marc Andreeson, I guess.
(Maybe a librarian and an information scientist, or two?)
Friday, December 14, 2007
"Web 3.0" AND OR the "Semantic Web"

In medicine, there is virtually no discussion about web 3.0 (see this PubMed search for web 3.0 (zero results) and most of the discussion on the semantic web (see this PubMed search - ~100 results) is from the perspective of biology/ bioinformatics.
The dichotomy in the literature is both perplexing and unsurprising. On the one hand, semanticists are looking at a new intelligent web has 'added meaning' to documents, and machine interoperability. On the other, web 3.0 advocates use '3.0' to be trendy, hip or to market themselves or their websites. That said, I prefer the web 3.0 label to the semantic web because it follows web 2.0 and suggests continuity.
It is important that medical librarians -- all librarians for that matter -- join in (and even lead) the discourse, particularly since the Semantic Web & Web 3.0 will be based heavily on the principles of knowledge and information organization. Whereas Web 1.0 and 2.0 could not distinguish among Acetaminophen, Paracetamol, and Tylenol -- Web 3.0 will.
Tuesday, December 11, 2007
Google and End of Web 2.0

What Google scholar has done is bring scholars and academics onto the web for their work in a way that Google alone did not. This has led to a greater use of social software and the rise of Web 2.0. For all its benefits, Web 2.0 has given us extreme info-glut which, in turn, will make Web 3.0 (and the semantic web) necessary.
I agree. Google Scholar (and Google) are very much Web 2.0 products. As I had elaborated in my previous entry, AJAX (which is Web 2.0-based), produced many remarkable programs such as Gmail and Google Earth.
Was this destiny? Not really. As Yihong Ding proposes, Web 2.0 did not choose Google; rather, it was Google that had decided to follow Web 2.0. If Yahoo had only known about the politics of the Web a little earlier, it might have precluded Google. (But that's for historians to analyze). Yahoo! realized the potential of Web 2.0 too late; it purchased Flickr without really understanding how to fit it into Yahoo!'s Web 1.0 universe.
Back to Dean's point. Google's strength might ultimately lead to its own demise. The PageRank algorithm might have a drawback similar to Yahoo!'s once dominant directory. Just as Yahoo! failed to catch up with the explosion of the Web, Google's PageRank will slowly lose its dominance due to the explosion caused by Web 2.0. With richer semantics, Google might not be willing to drastically alter its algorithm since it is Google's bread-and-butter. So that is why Google and Web 2.0 might be feeling the weight of the future fall too heavily on their shoulders.
Sunday, December 09, 2007
AJAX'ing our way to Web 2.0

Thursday, December 06, 2007
Are You Ready For Library 3.0?

It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change
Tuesday, December 04, 2007
I See No Forests But the Trees . . .
The transition from Web 1.0 to Web 2.0 is not supervised. W3C had not launched a special group for a plot of Web 2.0; and neither did Tim O'Reilly though he was one of the most insightful observers who caught and named this transition and one of the most anxious advocates of Web 2.0. In comparison, W3C did have launched a special group about Semantic Web that was engaged by hundreds of brilliant web researchers all over the world. The progress of WWW in the past several years, however, shows that the one lack of supervision (Web 2.0) advanced faster than the one with lots of supervision (Semantic Web). This phenomenon suggests the existence of web evolution laws that is objective to individual willingness.Even Tim O'Reilly pointed out that Web 2.0 largely came out of a conference when exhausted software engineers and computer programmers from the dot.com disaster saw common trends happening on the Web. Nothing is scripted in Web 2.0. Perhaps that's why there can never be a definitive agreement on what it constitutes. As I give instructional sessions and presentations of Web 2.0 tools, sometimes I wonder, how wikis, blogs, social bookmarking, and RSS feeds will look like two years from now. Will they be relevant? Or will they transmute into something entirely different? Or will we continue on as status quo?
Is Web 2.0 merely an interim to the next planned stage of the Web? Are we seeing trees, but missing the forest?
Friday, November 30, 2007
Digital Libraries in the Semantic Age

As Matthew proposes, by publishing controlled vocabularies in one place, which can then be accessed by all users across the Web, library catalogues can use the same Web-accessible vocabularies for cataloguing, marking up items with the most relevant terms for the domain of interest. Therefore, search engines can use the same vocabularies in their search to ensure that the most relevant items of information are returned.
The Semantic Web opens up the possibility to take such an approach. It offers open standards that can enable vendor-neutral solutions, with a useful flexibility (allowing structured and semi-structured data, formal and informal descriptions, and an open and extensible architecture) and it helps to support decentralized solutions where that is appropriate. In essence, RDF can be used as this common interchange for catalogue metadata and shared vocabulary, which can then be used by all libraries and search engines across the Web.
But in order to use the Semantic Web to its best effect, metadata needs to be published in RDF formats. There are several initiatives involved with defining metadata standards, and some of them are well known to librarians:
(1) Dublin Core Metadata Initiative
(2) MARC
(3) ONIX
(3) PRISM
Wednesday, November 21, 2007
Postmodern Librarian - Part Two

In my opinion, perhaps this is where Web 2.0 comes in. Although the postmodern information order is not clear to us, it seems to be the dynamic behind Web 2.0, in which interactive tools such as blogs, wikis, RSS facilitate social networking and the anarchic storage of unrestrained distribution of content. According to Joint, much of our professional efforts to impose a realist-modernist model on our library will fail. The old LIS model needs to be re-theorized, just as Newtonian Physics had to evolve into Quantum Theory, in recognition of the fact that super-small particles simply were not physically located where Newtonian Physics said they should be. In this light, perhaps this is where we can start to understand what exactly is Web 2.0. And beyond.
Friday, November 16, 2007
Semantic Web: A McCool Way of Explaining It

Reason? Knowledge representation is a technique with mathematical roots in the work of Edgar Codd, widely known as the one whose original paper using set theory and predicate calculus led to the relational database revolution in the 1980's. Knowledge representation uses the fundamental mathematics of Codd's theory to translate information, which humans represent with natural language, into sets of tables that use well-defined schema to defined schema to define what can be entered in the rows and columns.
The problem is that this creates a fundamental barrier, in terms of richness of representation as well as creation and maintenance, compared to the written language that people use. Logic, which forms the basis of OWL, suffers from an inability to represent exceptions to rules and the contexts in which they're valid.
Databases are deployed only by corporations whose information-management needs require them or by hobbyists who believe they can make some money from creating and sharing their databases. Because information theory removes nearly all context from information, both knowledge representation and relational databases represent only facts. Complex relationships, exceptions to rules, and ideas that resist simplistic classifications pose significant design challenges to information bases. Adding semantics only increases the burden exponentially.
Because it's a complex format and requires users to sacrifice expressively and pay enormous costs in translation and maintenance, McCool believes Semantic Web will not achieve widespread support. Never? Not until another Edgar Codd comes along our way. So we wait.
Wednesday, November 14, 2007
The Postmodern Librarian?

According to Joint, the idea of the postmodern digital library is clearly very different from the interim digital library. In the summer of 2006, a workshop at the eLit conference in Loughborough on the cultural impact of mobile communication technologies, there emerged the Five Theses of Loughborough. Here they are:
(1) There are no traditional information objects on the internet with determinate formats or determinate formats or determinate qualities: the only information object and information forat on the internet is "ephemera"
(2) The only map of the internet is the internet itself, it cannot be described
(3) A hypertext collection cannot be selectively collected because each information object is infinite and infinity cannot be contained
(4) The problem of digital preservation is like climate change; it is man-made and irreversible, and means that much digital data is ephemeral; but unlike climate change, it is not necessarily catastrophic
(5) Thus, there is no such thing as a traditional library in a postmodern world. Postmodern information sets are just as accessible as traditional libraries;: there are no formats, no descriptions, no hope of collection management, no realistic possibility of preservation. And they work fine.
Monday, November 12, 2007
New York City In a Semantic Web

We fit each car in New York City with a device that lets a reverse geographical position system reads its movements. Suppose, in addition, that another machine can predict the weather or some other phenomenon that impacts traffic. Assume that a third kind of device has the public transport timetables. Then, data from a collaborative knowledge picture of these machines can be used to advise on the best means of transportation for reaching a certain destination within the next few hours.The computer systems doing the calculations required for the traffic advisory are likely to be controlled by different bodies, such as the city authority or the national weather service. Therefore, there must be a way for software agents to process the information from the machine where it resides, to proceed with further processing of that information to a form in which a software agent of the final user can be used to query the dataset.
Wednesday, November 07, 2007
Genre Searching

In genre analysis, three steps must be taken:
(1) Identify - The core genre repertoire of the work domain
(2) Develop - A standard taxonomy to represent it
(3) Develop - Operational definitions of the genre classes in the taxonomy, including identifying features in terms of form, function and content to facilitate manual and automatic genre classification.
Throughout the entire presentation, my mind kept returning to the question: is this not another specialized form of social searching? A tailorized search engine which narrows its search to a specific genre? Although the two are entirely different things, I keep thinking that creating your own search engine is certainly much easier.
Simple Knowledge Organization System (SKOS) & Librarians

It's interesting that the very essence of librarianship and cataloging will play a vital role in the upcoming version of the Web. It's hard to fathom how this works: how can MARC records and the DDC have anything to do with the intelligent agents which form the layers of architecture of the Semantic Web and Web 3.0? The answer: metadata.
And even more importantly: the messiness and disorganization of the Web will require information professionals with the techniques and methods to reorganize everything coherently. Web 1.0 and 2.0 were about creating -- but the Semantic Web will be about orderliness and regulating. By controlled structured vocabulary, SKOS is built on the following features. Take a closer look at Miles & Perez-Aguera's article -- it's well worth a read.
(1) Thesauri - Broadly conforming to the ISO 2788:1986 guidelines such as the UK Archival Thesaurus (UKAT, 2004), the General Multilingual Environmental Thesaurus (GEMET), and the Art and Architecture Thesaurus
(2) Classification Schemes - Such the Dewey Decimal Classification (DDC), the Universal Decimal Classification (UDC), and the Bliss Classification (BC2)
(3) Subject Heading Systems - The Library of Congress Subject Headings (LCSH) and the Medical Subject Headings (MeSH)
Friday, November 02, 2007
New Librarians, New Possibilities?

University of Guelph Chief Librarian Michael Ridley, similarly sees a future where the university library serves as an “academic town square,” a place that "brings people and ideas together in an ever-bigger and more diffuse campus. Services in the future will include concerts, lectures, art shows – anything that trumpets the joy of learning."
Is this the future of libraries? Yes, it's a matter of time. That's where we're heading -- that's where we'll end up. It is a matter of time. Change is difficult, particularly in larger academic institutions where bureaucracy and politics play an essential role in all aspects of operations. There is great skepticism towards Jeff Trzeciak's drastic changes to McMaster Library -- he's either a pioneer if he succeeds, or an opportunist if he fails. A lot is riding on Jeff's shoulders.
Tuesday, October 30, 2007
Introducing Semantic Searching

(1) Ontological Semantics (OntoSem) - A formal and comprehensive linguistic theory of meaning in natural language. As such, it bears significantly on philosophy of language, mathematical logic, and cognitive science
(2) Query Detection and Extraction (QDEX) - A system invented to bypass the limitations of the inverted index approach when dealing with semantically rich data
(3) SemanticRank algorithm - Deploys a collection of methods to score and rank paragraphs that are retrieved from the QDEX system for a given query. The process includes query analysis, best sentence analysis, and other pertinent operations
(4) Dialogue - In order establish a human-like dialogue with the user, the dialogue algorithm's goal is to convert the search engine's role into a computerized assistant with advanced communication skills while utilizing the largest amount of information resources in the world.
(5) Search mission - Google mission was to organize the world's information and make it universally accessible and useful. hakia's mission is to search for better search.
Monday, October 22, 2007
A Defintion of the Semantic Web

Today's web pages are designed for human use, and human interpretation is required to understand the content. Because the content is not machine-interpretable, any type of automation is difficult. The Semantic Web augments today's web to eliminate the need for human reasoning in determining the meaning of web-based data. The Semantic Web is based on the concept that documents can be annotated in such a way that their semantic content will be optimally accessible and comprehensible to automated software agents and other computerized tools that function without human guidance. Thus, the Semantic Web might have a more significant impact in integrating resources that are not in a traditional catalog system than in changing bibliographic databases.
Thursday, October 11, 2007
Three Perspectives of the Semantic Web

(1) A Universal Library - Readily accessed and used by humans in a variety of information use and contexts. This perspective arose as a reaction to the disorder of the Web, which was not ordered in categorization until search engines came along. Metadata, cataloguing, and schemas were seen as the answer.
(2) Computational Agents - Completing sophisticated activities on behalf of their human counterparts. Tim Berners-Lee envisioned an infrastructure for knowledge acquisition, representation, and utilization across diverse use contexts. This global knowledge base wil be used by personal agents to collect and reason about information, assisting people with tasks common to everyday life.
(3) Federated Data and Knowledge Base - In this vision, federated components are developed with some knowledge of another or at least with a shared anticipation of the type of applications that will use the data. In essence, this Web encompasses languages used for syntactically sharing data rather than having to write specialized converters for each pair of languages.
Wednesday, October 10, 2007
Knowledge Management 3.0

Stage 1 - Internet of Intellectual Capital - this initial stage of KM was driven primarily by IT. In this stage, organizations realized that their stock in trade was information and knowledge -- yet the left hand rarely knew what the right hand did. When the Internet emerged, KM was about how to deploy the new technology to accomplish those goals.
Stage 2 - Human & Cultural dimensions - the hallmark phrase is communities of practice. KM during this stage was about knowledge creation as well as knowledge sharing and communication.
Stage 3 - Content & Retrievability - consists of structuring content and assigning descriptors (index terms). In content management and taxonomies, KM is about arrangement description, and structure of that content. Interestingly, taxonomies are perceived by the KM community as emanating from natural scientists, when in fact they are the domain of librarians and information scientists. To take this one step further, The Semantic Web is also built on taxonomies and ontologies. Anyone see a trend? Perhaps a convergence?
Monday, October 08, 2007
When is an Apple, an Apple?

I argue that we can go one step further because with the advent of Web 2.0, social search is actually the closest that we have to gathering input from all of the world’s users. How? Why? Let me explain with an analogy.
It’s not a matter of how, but a matter of when. Web 2.0 is very much like an apple. An apple can be food, a paperweight, a target, or a weapon if needed. It can be whatever you want it to be when you want it to be. The same goes for social searching. It is not search engines.
Del.icio.us is a social bookmarking web service. But it can be a powerful search tool if used properly; essentially, it taps into the social preferences of other users. Same goes for Youtube: it’s a video sharing website, but what’s to say that it can’t be used for searching videos for relevant topics, what’s to say that you can’t search related videos based on videos bookmarked by others? Social search is not based on program; it is mindset, a metaphorical sweet fruit, if you will.
In many ways, social searching is not unlike what librarians did (and still do) in the print-based world where an elegant craft of creativity and perserverence was required to find the right materials and putting them into the hands of the patron; the only difference is that the search has become digital.
Friday, October 05, 2007
Youtube University
Wednesday, October 03, 2007
Of Ontologies + Taxonomies
(1) Taxonomies: An Important Part of the Semantic Web - The new Web entails adding an extra layer of infrastructure to the current HTML Web - metadata in the form of vocabularies and the relationships that exist between selected terms will make this possible for machines to understand conceptual relationships as humans do.
(2) Defining Ontologies and Taxonomies - Ontologies and taxonomies are used synonymously -- Computer Scientists refer to hierarchies of structured vocabularies as "ontology" while librarians call them "taxonomy."
(3) Standardized Language and Conceptual Relationships - Both taxonomies and ontologies consist of a structured vocabulary that identifies a single key term to represent a concept that could be described using several words.
(4) Different Points of Emphasis - Computer Science is concerned with how software and associated machines interact with ontologies; librarians are concerned with how patrons retrieve information with the aid of taxonomies. However, they're essential different sides of the same coin.
(5) Topic Maps As New Web Infrastructure - Topic maps will ultimately point the way to the next stage of the Web's development. They represent a new international standard (ISO 13250). In fact, even the OCLC is looking to topic maps in its Dublin Core Initiative to organize the Web by subject.
Monday, October 01, 2007
Web 3.0 Librarian

It's not unlike the library before Melvil Dewey introduced the idea of organizing and cataloguing books in a classification system. In many ways, we see the parallels here 130 years later. It's not surprising at all to see the OCLC at the forefront in developing Semantic Web technologies. Many of the same techniques of bibliographic control apply to the possibilities of the Semantic Web. It was the computer scientists and computer engineers who had created Web 1.0 and 2.0, but it will ultimately be individuals from library science and information science who will play a prominent role in the evolution of organizing the messiness into a coherent whole for users. Are we saying that Web 2.0 is irrelevant? Of course not. Web 2.0 is an intermediary stage. Folksonomies, social tagging, wikis, blogs, podcasts, mashups, etc -- all of these things are essential basic building blocks to the Semantic Web.
Thursday, September 27, 2007
Libraries and the Semantic Web

Monday, September 24, 2007
Four Ways to Look at the Web

(2) The 3D Web - A Web you can walk through. Without leaving your desk, you can go house hunting across town or take a tour of Europe. Or you can walk through a Second Life–style virtual world, surfing for data and interacting with others in 3D.
(3) The Media-Centric Web - A Web where you can find media using other media—not just keywords. You supply, say, a photo of your favorite painting and your search engines turn up hundreds of similar paintings.
(4) The Pervasive Web - A Web that's everywhere. On your PC. On your cell phone. On your clothes and jewelry. Spread throughout your home and office. Even your bedroom windows are online, checking the weather, so they know when to open and close
Tuesday, September 18, 2007
The Seminal on The Semantic

(1) Expressing Meaning - Bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation.
(2) Knowledge Representation - For Web 3.0 to function, computers must have access to structured collections of information and sets of inference rules that they can use to conduct automated reasoning: this is where XML and RDF comes in, but are they only preliminary languages?
(3) Ontologies - But for a program that wants to compare or combine information across two databases, it has to know what two terms are being used to mean the same thing. This means that the program must have a way to discover common meanings for whatever database it encounters. Hence, an ontology has a taxonomy and a set of inference rules.
(4) Agents - The real power of the Semantic Web will be the programs that actually collect Web content from diverse sources, process the information and exchange the results with other programs. Thus, whereas Web 2.0 is about applications, the Semantic Web will be about services.
(5) Evolution of Knowledge - The Semantic Web is not merely a tool for conducting individual tasks; rather, its ultimate goal is to advance the evolution of human knowledge as a whole. Whereas human endeavour is caught between the eternal struggle of small groups acting independently and the need to mesh with the greater community, the Semantic Web is a process of joining together subcultures when a wider common language is needed.
Saturday, September 15, 2007
Web 3.0 & the Sem-antic Web

Ora Lassila and James Hendler, who co-authored along with Tim Berners-Lee, on the article which predicted what the semantic web would look like in 2001, argues in their most recent article, Embracing "Web 3.0" that the technologies that make it possible for the semantic web is slowly but surely maturing. In particular,
As RDF acceptance has grown, the need has become clear for a standard query language to be for RDF what SQL is for relational data. The SPARQL Protocol and RDF Query Language (SPARQL), now under standardization at the W3C, is designed to be that language.
But that doesn't mean that Web 2.0 technologies are obsolete. Rather, they are only a terminal stage of the evolution to Web 3.0. In particular, it is interesting that the authors note
(1) Folksonomies - tagging provides and organic, community-driven means of creating structure and classification vocabularies.
(2) Microformats - the use of HTML markup to decode structured data are a step toward "semantic data." Of course, although not in Semantic Web formats, microformatted data is easy to transform into something like RDF or OWL.
As you can see, we're moving along. Take a look at this: on the surface, Yahoo Food looks just like any Web service; underneath, it is made from SPARQL which really does "sparkle."
Monday, September 10, 2007
Six Kinds of (Social) Searching
